47 research outputs found

    The DMT classification of real and quaternionic lattice codes

    Full text link
    In this paper we consider space-time codes where the code-words are restricted to either real or quaternion matrices. We prove two separate diversity-multiplexing gain trade-off (DMT) upper bounds for such codes and provide a criterion for a lattice code to achieve these upper bounds. We also point out that lattice codes based on Q-central division algebras satisfy this optimality criterion. As a corollary this result provides a DMT classification for all Q-central division algebra codes that are based on standard embeddings.Comment: 6 pages, 1 figure. Conference paper submitted to the International Symposium on Information Theory 201

    Class Field Theoretic Methods in the Design of Lattice Signal Constellations

    Get PDF
    Siirretty Doriast

    Algebraic Hybrid Satellite-Terrestrial Space-Time Codes for Digital Broadcasting in SFN

    Full text link
    Lately, different methods for broadcasting future digital TV in a single frequency network (SFN) have been under an intensive study. To improve the transmission to also cover suburban and rural areas, a hybrid scheme may be used. In hybrid transmission, the signal is transmitted both from a satellite and from a terrestrial site. In 2008, Y. Nasser et al. proposed to use a double layer 3D space-time (ST) code in the hybrid 4 x 2 MIMO transmission of digital TV. In this paper, alternative codes with simpler structure are proposed for the 4 x 2 hybrid system, and new codes are constructed for the 3 x 2 system. The performance of the proposed codes is analyzed through computer simulations, showing a significant improvement over simple repetition schemes. The proposed codes prove in addition to be very robust in the presence of power imbalance between the two sites.Comment: 14 pages, 2 figures, submitted to ISIT 201

    Fast-Decodable Asymmetric Space-Time Codes from Division Algebras

    Full text link
    Multiple-input double-output (MIDO) codes are important in the near-future wireless communications, where the portable end-user device is physically small and will typically contain at most two receive antennas. Especially tempting is the 4 x 2 channel due to its immediate applicability in the digital video broadcasting (DVB). Such channels optimally employ rate-two space-time (ST) codes consisting of (4 x 4) matrices. Unfortunately, such codes are in general very complex to decode, hence setting forth a call for constructions with reduced complexity. Recently, some reduced complexity constructions have been proposed, but they have mainly been based on different ad hoc methods and have resulted in isolated examples rather than in a more general class of codes. In this paper, it will be shown that a family of division algebra based MIDO codes will always result in at least 37.5% worst-case complexity reduction, while maintaining full diversity and, for the first time, the non-vanishing determinant (NVD) property. The reduction follows from the fact that, similarly to the Alamouti code, the codes will be subsets of matrix rings of the Hamiltonian quaternions, hence allowing simplified decoding. At the moment, such reductions are among the best known for rate-two MIDO codes. Several explicit constructions are presented and shown to have excellent performance through computer simulations.Comment: 26 pages, 1 figure, submitted to IEEE Trans. Inf. Theory, October 201

    Almost universal codes for fading wiretap channels

    Full text link
    We consider a fading wiretap channel model where the transmitter has only statistical channel state information, and the legitimate receiver and eavesdropper have perfect channel state information. We propose a sequence of non-random lattice codes which achieve strong secrecy and semantic security over ergodic fading channels. The construction is almost universal in the sense that it achieves the same constant gap to secrecy capacity over Gaussian and ergodic fading models.Comment: 5 pages, to be submitted to IEEE International Symposium on Information Theory (ISIT) 201

    Number field lattices achieve Gaussian and Rayleigh channel capacity within a constant gap

    Full text link
    This paper proves that a family of number field lattice codes simultaneously achieves a constant gap to capacity in Rayleigh fast fading and Gaussian channels. The key property in the proof is the existence of infinite towers of Hilbert class fields with bounded root discriminant. The gap to capacity of the proposed families is determined by the root discriminant. The comparison between the Gaussian and fading case reveals that in Rayleigh fading channels the normalized minimum product distance plays an analogous role to the Hermite invariant in Gaussian channels.Comment: Will be submitted to ISIT. Comments, suggestions for references etc. are warmly welcome. Edit:Appendix adde
    corecore